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Abstract: This document provides a derivation of Ramsey optimal policy from
timeless perspective and describes its implementation in Dynare++.

1 Derivation of the First Order Conditions

Let us start with an economy populated by agents who take a number of variables
exogenously, or given. These may include taxes or interest rates for example. These
variables can be understood as decision (or control) variables of the timeless Ramsey
policy (or social planner). The agent’s information set at timet includes mass-point
distributions of these variables for all times aftert. If it denotes an interest rate for
example, then the information setIt includesit|t, it+1|t, . . . , it+k|t, . . . as numbers. In
addition the information set includes all realizations of past exogenous innovationsuτ

for τ = t, t− 1, . . . and distibutionsuτ ∼ N(0,Σ) for τ = t + 1, . . ..
The information setIt includes the information on past realizations and future dis-

tributions ofuτ . This information set will be denoted byJt, i.e. the information set
containing onlyuτ . We will use the following notation for expectations through these
sets:

EI
t [X] = E(X|It)

EJ
t [X] = E(X|Jt)

The agents optimize taking the decision variables of the social planner att and
future as given. This means that all expectations they form are conditioned on the set
It. Let yt denote a vector of all endogenous variables including the planer’s decision
variables. Let the number of endogenous variables ben. The economy can be described
by m equations including the first order conditions and transition equations:

EI
t [f(yt−1, yt, yt+1, ut)] = 0. (1)

This leftsn − m the planner’s control variables. The solution of this problem is a
decision rule of the form:

yt = g(yt−1, ut, ct|t, ct+1|t, . . . , ct+k|t, . . .), (2)
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wherec is a vector of planner’s control variables.
Each period the social planner chooses the vectorct to maximize its objective such

that (2) holds for all times followingt. This would lead ton−m first order conditions
with respect toct. These first order conditions would contain unknown derivatives of
endogenous variables with respect toc, which would have to be retrieved from the
implicit constraints (1) since the explicit form (2) is not known.

The other way to proceed is to assume that the planner is so dumb that he is not
sure what are his control variables. So he optimizes with respect to allyt given the
constraints (1). If the planner’s objective isb(yt−1, yt, yt+1, ut) with a discount rateβ,
then the optimization problem looks as follows:

max
yt

EJ
t

[ ∞∑
τ=t

βτ−tb(yτ−1, yτ , yτ+1, uτ )

]
s.t. (3)

EI
τ [f(yt−1, yt, yt+1, ut)] = 0 for τ = . . . , t− 1, t, t + 1, . . .

Note two things: First, each constraint (1) in (3) is conditioned onIτ not It. This is
very important, since the behaviour of agents at periodτ = t + k is governed by the
constraint using expectations conditioned ont+k, nott. The social planner knows that
at t + k the agents will use all information available att + k. Second, the constraints
for the planner’s decision made att include also constraints for agent’s behaviour prior
to t. This is because the agent’s decision rules are given in the implicit form (1) and
not in the explicit form (2).

Using Lagrange multipliers, this can be rewritten as

max
yt

EJ
t

[ ∞∑
τ=t

βτ−tb(yτ−1, yτ , yτ+1, uτ )

+
∞∑

τ=−∞
βτ−tλT

τ EI
τ [f(yτ−1, yτ , yτ+1, uτ )]

]
, (4)

whereλt is a vector of Lagrange multipliers corresponding to constraints (1). Note that
the multipliers are multiplied by powers ofβ in order to make them stationary. Taking
a derivative wrtyt and putting it to zero yields the first order conditions of the planner’s
problem:

EJ
t

 ∂

∂yt
b(yt−1, yt, yt+1, ut) + βL+1 ∂

∂yt−1
b(yt−1, yt, yt+1, ut)

+ β−1λT
t−1E

I
t−1

[
L−1 ∂

∂yt+1
f(yt−1, yt, yt+1, ut)

]
+ λT

t EI
t

[
∂

∂yt
f(yt−1, yt, yt+1, ut)

]

+ βλT
t+1E

I
t+1

[
L+1 ∂

∂yt−1
f(yt−1, yt, yt+1, ut)

]  = 0, (5)
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whereL+1 andL−1 are one period lead and lag operators respectively.
Now we have to make a few assertions concerning expectations conditioned on the

different information sets to simplify (5). Recall the formula for integration through
information on which another expectation is conditioned, this is:

E [E [u|v]] = E[u],

where the outer expectation integrates throughv. SinceJt ⊂ It, by easy application of
the above formula we obtain

EJ
t

[
EI

t [X]
]

= EJ
t [X] and

EJ
t

[
EI

t−1 [X]
]

= EJ
t [X] (6)

EJ
t

[
EI

t+1 [X]
]

= EJ
t+1 [X]

Now, the last term of (5) needs a special attention. It is equal toEJ
t

[
βλT

t+1E
I
t+1[X]

]
.

If we assume that the problem (3) has a solution, then there is a deterministic func-
tion from Jt+1 to λt+1 and soλt+1 ∈ Jt+1 ⊂ It+1. And the last term is equal to
EJ

t

[
EI

t+1[βλT
t+1X]

]
, which isEJ

t+1

[
βλT

t+1X
]
. This term can be equivalently written

asEJ
t

[
βλT

t+1E
J
t+1[X]

]
. The reason why we write the term in this way will be clear

later. All in all, we have

EJ
t

 ∂

∂yt
b(yt−1, yt, yt+1, ut) + βL+1 ∂

∂yt−1
b(yt−1, yt, yt+1, ut)

+ β−1λT
t−1L

−1 ∂

∂yt+1
f(yt−1, yt, yt+1, ut)

+ λT
t

∂

∂yt
f(yt−1, yt, yt+1, ut)

+ βλT
t+1E

J
t+1

[
L+1 ∂

∂yt−1
f(yt−1, yt, yt+1, ut)

]  = 0. (7)

Note that we have not proved that (5) and (7) are equivalent. We proved only that if (5)
has a solution, then (7) is equivalent (and has the same solution).

2 Implementation

The user inputsb(yt−1, yt, yt+1, ut), β, and agent’s first order conditions (1). The
algorithm has to produce (7).
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