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1 SVAR identification

1. well known schemes are identified by option. Currently:

svar_identification(upper_choleksy);
svar_identification(lower_choleksy);

2. more sophisticated schemes are described by listing exculsion restrictions
on A0 or A+:

svar_identification;
exclusion lag 0;
equation 1, y, pi;
equation 2, pi, r;
exclusion lag 1;
equation 1, y, pi;
equation 2, pi, r;
end;

This generates
M_.svar_exclusions{lag}(2xn matrix with equation numbers and restricted variable IDs)

The SVAR model is written as

ytA0(st) = xtA+(st) + εt Ξ−1(st),

where yt is an n × 1 vector of endogenous variables, xt is a vector of all
lagged variables plus the constant term, the state st follows a Markov
process, Ξ−1(st) is a diagonal matrix in which the diagonal elements rep-
resent the state-dependent shock variances, and εt has a Gaussian distri-
bution with mean 0 and variance matrix I. The order of xt follows this
convention. The ordering of variables in each equation has the following
convention. The n variables at the first lag are order first, followed by the
n variables at the second lag, and so on. The last variable is the constant
term.
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2 Restrictions on SVAR Markov-switching pro-
cesses

SWZ introduce a restriction on the lagged coefficients in the SVAR. It can be
called by svar_restriction(SWZ). The restriction is essential to overparame-
terization by preventing an excessive number of parameters from changing from
one state to another. The restrictions take the following form:

A+(i, j, `, st) = g(i, j, `)δ(i, j, st),

where i stands for the ith variable, j for the jth equation, and ` for the `th lag.
This expression indicates that the coefficients at the first lag may change with
state but the coefficients at other lags in each state are proportional those at
the first lag in that state.

3 Prior specification on SVAR coefficients

The Sims and Zha (1998) prior applies to A0(st) for all st and g(i, j, `) (in the
original article by Sims and Zha (1998), the hyperparameter λ2 is always set to
1). There are six hyperparameters controlling the tightness of this prior:

1. µ1 controls overall tightness of the random walk prior (same as λ0 in Sims
and Zha (1998)).

2. µ2 controls relative tightness of the random walk prior on the lagged co-
efficients (same as λ1 in Sims and Zha (1998)).

3. µ3 controls relative tightness of the random walk prior on the constant
term (same as λ4 in Sims and Zha (1998)).

4. µ4 controls tightness of the prior that dampens the erratic sampling effects
on lag coefficients (lag decay) (same as λ3 in Sims and Zha (1998)).

5. µ5 controls weight on the sum of coefficients in each equation through
n dummy observations excluding the constant term. This component of
the prior expresses belief about unit roots (same as µ5 in Sims and Zha
(1998)).

6. µ6 controls weight on a single dummy initial observation including the
constant term. This component of the prior expresses belief in cointegra-
tion relationships (up to n− 1) and stationarity (same as µ6 in Sims and
Zha (1998)).

Note that while smaller values of µi for i = 1, . . . , 4 means a tighter random
walk prior, larger values of µi for i = 5, 6 means a tighter prior on unit roots and
cointegration. We provide the following benchmark values of these hyperparam-
eters, although one should vary the values for sensitivity check. For quarterly
data, Sims and Zha (1998) suggest µ1 = 1, µ2 = 1, µ3 = 0.1, µ4 = 1, µ5 = 1,
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and µ6 = 1. For monthly data, Sims and Zha (2006) suggest µ1 = 0.57, µ2 =
0.13, µ3 = 0.1, µ4 = 1.2, µ5 = 10, and µ6 = 10.

The prior on δ(i, j, st) for each i, j and st is a normal distribution with
mean 0 and standard deviation 50. This prior is diffuse enough to allow for
the possibility that VAR coefficients can have extremely large values for some
states.

The prior on each element of the diagonal of Ξ2(st) (denoted as Zeta in our
output file) is a gamma distribution, represented by Gamma(ᾱ, β̄) with ᾱ = 1
and β̄ = 1.

4 Prior specification on Markov Switching pro-
cesses

1. Priors on Marov Switching processes are specified through average du-
ration of each state markov_switching(chain=i,state=j,duration=d)
specifies that state j in chain i last on average d periods. Alternatively,
if all the states have the same average duration, it is possible to simply
declare the number of states in the chain with option number_of_states
Example:

markov_switching(chain=1,state=1,duration=3);
markov_switching(chain=1,state=2,duration=0.5);
markov_switching(chain=2,state=1,duration=1);
markov_switching(chain=2,state=2,duration=4.5);
markov_switching(chain=2,state=3,duration=2);
markov_switching(chain=3,number_of_states=3,duration=2.5);

2. Transition matrix specification (for future use)

ms_chain(1) = [0.25*a d 0; 0.25*b e 0; . . 1];
ms_chain(2) = [a 0; . .];

The sum of the column must sum to 1. The dot (.) represents the com-
plement to 1.

5 Associating Markov processes with coefficient
matrices

1. default in the case of one chain: all coefficient matrices change

2. specific matrices are linked to specific chains:

svar(coefficients,chain=1);
svar(variances,chain=1);
svar(constants,chain=2);
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3. specific equations are linked to specific chains:

svar(coefficients,equation=1,chain=2);
svar(variances,equation=3,chain=1);
svar(constants,equation=3,chain=1);
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