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1. Gamma Distributions

Definition 1.1. The Gamma function is defined as follows:

Γ(n) =

∫ ∞
0

xn−1e−xdx

for any x > 0, zero elsewhere.

One can easily prove that the following identities hold: Γ(1) = 1, Γ
(
1
2

)
=
√
π and

Γ(n) = (n− 1)Γ(n− 1).

Definition 1.2. A positive real random variable has a gamma distribution with

parameters α > 0 (shape) and β > 0 (scale) iff its probability density function is

given by the following equation:

f(x) = C(α, β)−1 × xα−1e−
x
β

where C(α, β) = Γ(α)βα is the constant of integration. We will denote X ∼ G(α, β).

In dynare this distribution may be specified as a prior in the estimated params

block (using the keyword GAMMA PDF). The user has to specify the expectation and

standard deviation of the distribution.

Proposition 1.1. If X ∼ G(α, β), then the expectation and variance of X are:

µ = αβ

σ2 = αβ2

Proof. By definition the expectation is given by:

µ = C(α, β)−1
∫ ∞
0

xαe−
x
β dx

= C(α, β)−1C(1 + α, β)

=
Γ(1 + α)β1+α

Γ(α)βα

=
αΓ(α)β1+α

Γ(α)βα

= αβ



By definition of the second order moment we have:

E[X2] = C(α, β)−1
∫ ∞
0

xα+1e−
x
β dx

= C(α, β)−1C(2 + α, β)

=
Γ(2 + α)β2+α

Γ(α)βα

=
(α+ 1)αΓ(α)β2+α

Γ(α)βα

= α(α+ 1)β2 − α2β2

and

σ2 = α(α+ 1)β2 − α2β2 = αβ2

�

dynare computes α and β from these moments, we have:

α =
µ2

σ2

β =
σ2

µ

(1)

Proposition 1.2. The mode of X ∼ G(α, β) is:

m =

0 if α ≤ 1,

(α− 1)β otherwise.

Proof. We have:

d

dx
f(x) = C(α, β)−1 ×

{
(α− 1)xα−2e−

x
β − 1

β
xα−1e−

x
β

}
= C(α, β)−1xα−1e−

x
β ×

{
−1− α

x
− 1

β

}
If α ≤ 1 the density is monotone decreasing and we have a vertical asymptote at

zero. Consequently, if α ≤ 1 we have m = 0. If α > 1, d/dxf(x) non negative if and

only if:

−1− α
x
− 1

β
≥ 0

equivalently, we have:

x ≤ (α− 1)β

If the shape parameter α is (strictly) greater than one, we have m = (α− 1)β. �

With an asymmetric distribution it may seem more sensible to define the parameters

from the mode and the variance. We have:m = (α− 1)β

σ2 = αβ2

⇔

α = 1 + m
β

0 = β2 +mβ − σ2



One can easily check that the quadratic equation has always two distinct real solu-

tions, one positive and one negative. We have:

α = 1− 2

1−
√

1 + 4
(
σ
m

)2
β = −m

2

(
1−

√
1 + 4

( σ
m

)2)(2)

1.1. Gamma type 2 & 1 distributions.

Definition 1.3. Let X > 0 be a real random variable with a gamma distribution

parametrized by a shape ν
2 > 0 and scale 2

s > 0. We will denote X ∼ G2(ν, s) ≡
G
(
ν
2 ,

2
s

)
and say that X has a gamma-2 distribution.

Definition 1.4. Let Y =
√
X with X ∼ G2(ν, s), we say that Y has a gamma-1

distribution and denote Y ∼ G1(ν, s).

These distribution are not implemented in dynare, but can be easily built from

the gamma distribution.

Proposition 1.3. The densities of the gamma-2 and gamma-1 are respectively:

fX(x) = C
(
ν

2
,

2

s

)−1
× x ν2−1e− sx2

and

fY (y) = C̃
(
ν

2
,

2

s

)−1
yν−1e−

s
2y

2

where C̃(α, β) = C(α, β)/2.

Proof. The density of the gamma-2 distribution is easily obtained from density of

the gamma distribution. The first two moments of the gamma-2 distribution are

directly obtained from proposition (1.1). The density of the gamma-1 distribution

is given by:

fY (y) = fX(h−1(y))×
∣∣∣∣ d

dy
h−1(y)

∣∣∣∣
where h(x) ≡

√
x and fX denotes the density of the gamma-2 distribution:

fX(x) = C
(
ν

2
,

2

s

)−1
× x ν2−1e− sx2

Substituting fX and the h−1 into the definition of fY , we get:

fY (y) = C
(
ν

2
,

2

s

)−1
× yν−2e−

sy2

2 ×
∣∣∣∣ d

dy
y2
∣∣∣∣

⇔ fY (y) = 2C
(
ν

2
,

2

s

)−1
yν−2e−

sy2

2 y

so that:

(3) fY (y) = C̃
(
ν

2
,

2

s

)−1
yν−1e−

s
2y

2

where C̃(α, β) = C(α, β)/2 is the constant of integration. �



Proposition 1.4. If X ∼ G2(ν, s), then the expectation and variance of X are:

µ =
ν

s

σ2 =
2ν

s2

Proof. By substituting the definition of the gamma-2 distribution in proposition

1.1. �

Proposition 1.5. If Y ∼ G1(ν, s), then the expectation and variance of Y are:

µ =

√
2

s

Γ
(
ν+1
2

)
Γ
(
ν
2

)
σ2 =

ν

s
− µ2

Proof. The expectation of this distribution is defined by:

µ = C̃
(
ν

2
,

2

s

)−1 ∫ ∞
0

yνe−
s
2y

2

dy

= C
(
ν

2
,

2

s

)−1 ∫ ∞
0

x
ν
2−

1
2 e−

s
2xdx

=
Γ
(
ν
2 + 1

2

) (
2
s

) ν
2+

1
2

Γ
(
ν
2

) (
2
s

) ν
2

So that

µ =

√
2

s

Γ
(
ν+1
2

)
Γ
(
ν
2

)
For the second order moment, we have:

E
[
Y 2
]

= E[X]

where X ∼ G2(ν, s). Using proposition 1.4 we obtain:

E
[
Y 2
]

=
ν

s

�

1.2. Chi-squared and Exponential distributions. A number of distributions

may be defined as special cases of the Gamma distribution. A chi-squared distri-

bution with ν degrees of freedom, χ2(ν), is a gamma distribution: G
(
ν
2 , 2
)
. The

chi-squared prior is not implemented in dynare but obviously the user can obtain

it by carefully choosing the expectation and variance of the gamma prior (that is,

by setting µ = ν and σ2 = 2ν). As long as the variance is twice the expectation, the

prior is a chi-squared distribution. An exponential distribution with expectation

λ−1, ξ(λ), is also a gamma distribution: G
(
1, 1

λ

)
. Again the exponential prior is

not implemented in dynare but is obtained from the gamma distribution as long

as the prior expectation is the squared root of the prior variance. As a consequence,

by using the gamma prior and setting µ = σ the user chooses a distribution whose

mode is zero.

1.3. Shifted gamma distribution. The support of the gamma distribution is

usually the positive real line. In dynare the user has the possibility to shift the



support of this distribution. This may be useful, for instance, if someone wants

to estimate the elasticity of substitution of a CES production function with the

(deterministic) belief that this elasticity has to be greater than one (Cobb-Douglas

technology). The density is then defined with three parameters α > 0 (shape),

β > 0 (scale) and δ (location, the lower bound of the distribution’s support):

(4) f(x) = C(α, β)−1 × (x− δ)α−1e−
x−δ
β

where the constant of integration is defined as before. Obviously this shift affects

the first moment (µ = δ + αβ) and the mode of the distribution (the same shift

applies) but not the variance.

2. Inverted gamma distribution

Definition 2.1. Let X be a gamma distributed random variable with shape param-

eter α > 0 and scale parameter β > 0. Then Z = X−1 is said to be inverted gamma

distributed, Z ∼ IG(α, β).

Proposition 2.1. The density of the continuous random variable Z ∼ IG(α, β) is:

f(z) = C(α, β)−1 × z−α−1e−
1
βz

where C(α, β) = Γ(α)βα is the constant of integration.

Proof. Let fX denote the density of the gamma distribution and define h(x) = 1
x .

The density of the inverted gamma distribution is defined as follows:

fZ(z) = fX(h−1(z))×
∣∣∣∣ d

dz
h−1(z)

∣∣∣∣
= C (α, β)

−1 × z−α+1e−
1
βz ×

∣∣∣∣ d

dz

1

z

∣∣∣∣
= C (α, β)

−1 × z−α−1e−
1
βz

�

Proposition 2.2. The expectation and variance of Z ∼ IG(α, β) are:

µ =
1

β(α− 1)

σ2 =
1

β2(α− 1)2(α− 2)
for any α ≥ 2



Proof. By definition of the Inverse Gamma pdf, we have:

µ = C(α, β)−1
∫ ∞
0

z−αe−
1
βz dz

= C(α, β)−1
∫ ∞
0

uα−2e−
u
β du

=
C(α− 1, β)

C(α, β)

=
Γ(α− 1)βα−1

Γ(α)βα

=
Γ(α− 1)βα−1

(α− 1)Γ(α− 1)βα

=
1

(α− 1)β

and

E[Z2] = C(α, β)−1
∫ ∞
0

z−α+1e−
1
βz dz

= C(α, β)−1
∫ ∞
0

uα−3e−
u
β du

=
C(α− 2, β)

C(α, β)

=
Γ(α− 2)βα−2

Γ(α)βα

=
Γ(α− 2)βα−2

(α− 2)(α− 1)Γ(α− 2)βα

=
1

(α− 1)(α− 2)β2

so that

σ2 =
1

(α− 1)(α− 2)β
− 1

(α− 1)2β2

=
(α− 1)

(α− 1)2β2(α− 2)
− α− 2

(α− 1)2β2(α− 2)

=
1

(α− 1)2β2(α− 2)

�

The system of equations defining the expectation and the variance can be solved

for the shape and scale parameters:

α = 2 +
(µ
σ

)2
β =

1

µ
[
1 +

(
µ
σ

)2](5)

This distribution is not implemented in dynare.



Proposition 2.3. The mode of Z ∼ IG(α, β) is strictly positive:

m =
1

β(1 + α)

Proof. We have:

d

dz
f(z) = C(α, β)−1z−α−2e−

1
βz

{
1

βz
− (1 + α)

}
There exists only one value of z such that this first derivate is zero:

d

dz
f(z) = 0⇔ z =

1

β(1 + α)

�

Again one may prefer to define this distribution by specifying the mode and the

variance (see below for the inverse gamma-2 distribution). Note that it is also

possible to define this distribution by specifying the expectation and the mode. We

have: µ = 1
β(α−1)

m = 1
β(α+1)

or equivalently: µ = 1
β(α−1)

m = µ α−1
(α+1)

We can solve the second equation for α. We have:

α =

(
1− m

µ

)−1(
m

µ
+ 1

)
=
µ+m

µ−m
and by substitution:

β =
1

2

(
1

m
− 1

µ

)
=
µ−m
2µm

2.1. Inverted gamma-2 and gamma-1 distributions.

Definition 2.2. Let X > 0 be a real random variable with a gamma-2 distribution,

X ∼ G
(
ν
2 ,

2
s

)
. Y = X−1 is said to have an inverted gamma-2 distribution Y ∼

IG2(ν, s).

Proposition 2.4. The probability density function of Y ∼ IG2(ν, s) is:

fY (y) = C
(
ν

2
,

2

s

)−1
× y− ν2−1e−

s
2y

Proof. Direct from proposition 2.1 with α = ν/2 and β = 2/s. �

Proposition 2.5. The expectation and variance of Y ∼ IG2(ν, s) are:

µ =
s

ν − 2

σ2 =
2µ2

ν − 4

Proof. Direct from proposition 2.2 with α = ν/2 and β = 2/s. �



The inverted gamma-2 distribution is implemented in dynare as a prior, using the

keyword INV GAMMA2 PDF. The user has to specify µ and σ, and dynare solves the

two equations given in proposition 2.5 for the scale and shape parameters:

s = 2µ

(
1 +

µ2

σ2

)
ν = 2

(
2 +

µ2

σ2

)(6)

This distribution is often used as a prior for the variance of a structural shock

or measurement error. Note that the sole difference between an inverted gamma

distribution and the inverted gamma-2 distribution is in the parametrization of the

shape and scale parameters. If the prior distribution is defined by its first and

second moments, this difference does not matter.

Proposition 2.6. The mode of Y ∼ IG2(ν, s) is:

m =
s

ν + 2
> 0

Proof. We have:

d

dy
fY (y) = C

(
ν

2
,

2

s

)−1
y−

ν
2−2e−

s
2y

{
s

2y
−
(ν

2
+ 1
)}

There exists only one value such that the first derivate is zero:

d

dy
fY (y) = 0⇔ y =

s

ν + 2

�

One can define the prior using the mode and the variance (or alternatively the

mode and the mean). Substituting the expression for the mode in the expression

for σ2 and rearranging we obtain the following cubic equation for ν:

(7) ϕδ(ν) ≡ ν3 − (8 + δ)ν2 + (20− 4δ) ν − 16− 4δ = 0

where δ = 2 (m/σ)
2
.

Proposition 2.7. The cubic equation 7 has only one real solution greater than

four.

Let ν?(δ) be the pertinent root of ϕ. We then have s? = m(ν?(δ) + 2) by inverting

the mode formula given in proposition 2.6.

Proof. Let ν̄1(δ) and ν̄2(δ) be the roots of the second order polynomial ϕ′δ(ν). One

can show that they are given by :

ν̄1(δ) =
16 + 2δ − 2

√
δ2 + 28δ + 4

6
≤ 2 ∀δ ≥ 0

and

ν̄2(δ) =
16 + 2δ + 2

√
δ2 + 28δ + 4

6
≥ 10

3
∀δ ≥ 0



Let ν̃(δ) = 8
3 + δ

3 be the root of ϕ′′δ (ν), we have :

ν̄1(δ) < ν̃(δ) < ν̄2(δ)

for any value of δ. As a consequence, we have ϕ′δ(ν̃(δ)) < 0 and also ϕδ(ν̄2(δ)) < 0.

Knowing that ϕδ(ν) is monotone increasing in [ν̄2(δ),+∞) and ϕδ(4) = −36δ ≤ 0,

the biggest root of the third order polynomial has to be greater than four.

�

In practice we instead usually define the priors over standard deviations, that is

over the square root of the variance. This motivates the following definition.

Definition 2.3. Let X > 0 be a real random variable with a gamma-1 distribution,

X ∼ G1 (ν, s). Y = X−1 is said to have an inverted gamma-1 distribution Y ∼
IG1(ν, s).

Proposition 2.8. The probability density function of Y ∼ IG1(ν, s) is:

fY (y) = C̃
(
ν

2
,

2

s

)−1
y−ν−1e

− s
2y2

Proof. Let fX denote the density of the gamma-1 distribution and define h(x) =

1/x. The density of the inverted gamma-1 distribution is defined as follows:

fY (y) = fX(h−1(y))×
∣∣∣∣ d

dy
h−1(y)

∣∣∣∣
= C̃

(
ν

2
,

2

s

)−1
y−ν+1e

− s
2y2

1

y2

= C̃
(
ν

2
,

2

s

)−1
y−ν−1e

− s
2y2

�

Proposition 2.9. The expectation and variance of Y ∼ IG1(ν, s) are:

µ =

√
s

2

Γ
(
ν−1
2

)
Γ
(
ν
2

)
σ2 =

s

ν − 2
− µ2

Proof. The first order moment is defined by:

µ = C̃
(
ν

2
,

2

s

)−1 ∫ ∞
0

yy−ν−1e
− s

2y2 dy

= C̃
(
ν

2
,

2

s

)−1
1

2

∫ ∞
0

x
ν
2−

1
2−1e−

s
2xdx

= C
(
ν

2
,

2

s

)−1 ∫ ∞
0

x
ν−1
2 −1e−

s
2xdx

=
Γ
(
ν−1
2

) (
2
s

) ν−1
2

Γ
(
ν
2

) (
2
s

) ν
2

=

√
s

2

Γ
(
ν−1
2

)
Γ
(
ν
2

)



The second order un-centered moment is defined by:

E[Y 2] = C̃
(
ν

2
,

2

s

)−1 ∫ ∞
0

y2y−ν−1e
− s

2y2 dy

= C̃
(
ν

2
,

2

s

)−1 ∫ ∞
0

y−ν+1e
− s

2y2 dy

= C̃
(
ν

2
,

2

s

)−1
1

2

∫ ∞
0

x
ν
2−2e−

s
2xdx

=
Γ
(
ν
2 − 1

) (
2
s

) ν
2−1

Γ
(
ν
2

) (
2
s

) ν
2

=
s

2

Γ
(
ν−2
2

)
ν−2
2 Γ

(
ν−2
2

)
=

s

ν − 2

So that σ2 = s
ν−2 − µ

2. �

The inverted gamma-1 distribution is implemented in dynare as a prior (using

the keywords INV GAMMA1 PDF or INV GAMMA PDF). The user has to specify µ and σ,

and dynare solves the equations given in proposition 2.9 for the scale and shape

parameters. There is no closed form solution in this case, a numerical approach is

used. dynare first solves for ν in the following equation1:

2Γ
(ν

2

)2
µ2 = (σ2 + µ2)(ν − 2)Γ

(
ν − 1

2

)2

and then computes:

s = (σ2 + µ2)(ν − 2)

This is done in the m file inverse gamma specification.m. Note that in the case

of an infinite variance we have a closed form solution:

ν = 2

s =
2

π
µ2

Proposition 2.10. The mode of Y ∼ IG1(ν, s) is:

m =

√
ν − 1

s

Proof. We have:
d

dy
fY (y) ∝ xνe− s2x

2

{
ν − 1

x2
− s
}

which is zero iff x = m. �

One can define the prior using the mode and the variance. Substituting the expres-

sion for the mode in the expression for σ2 and rearranging we obtain:

σ2m2 =
ν − 1

ν − 2
− ν − 1

2

(
Γ
(
ν−1
2

)
Γ
(
ν
2

) )2

1Because Γ



Dynare numerically solves this equation for ν and computes s = ν−1/m2. Note that

in the case of an infinite variance we have a closed form solution:

ν = 2

s =
1

m2

Z The inverse gamma-1(-2) is usually used as a prior for the standard deviation

(resp. variance) of a structural (or measurement) shock. This is because in lin-

ear models with gaussian perturbation, the Normal (for the parameters) – Inverse

Gamma (for the variance of the error) prior is conjugate. Obviously this is not

true for DSGE models, there is no computational advantage in choosing the inverse

gamma prior.

3. Beta distributions

Definition 3.1. The Beta function is defined as follows:

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx

with (α, β) ∈ R2.

Proposition 3.1. The Beta function can be written using the Gamma function as

follows:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

Proposition 3.2. Let X ∼ G(α, 1) and Y ∼ G(β, 1) be two independent random

variables. The random variable Z = X/X+Y is said to be beta distributed, Z ∼
B(α, β), and its probability density function is given by:

fZ(z) = B(α, β)zα−1(1− z)β−1

Proposition 3.3. The expectation and variance of Z ∼ B(α, β) are:

µ =
α

α+ β

σ2 =
αβ

(α+ β)2(α+ β + 1)

The system of equations defining the expectation and the variance can be solved

for the shape and scale parameters:

α =
(1− µ)µ2

σ2
− µ

β =

(
(1− µ)µ

σ2
− 1

)
(1− µ)

(8)

The beta distribution can have one, two (the density is U-shaped if and only if

α < 1 and β < 1) or an infinity of modes (if α = β = 1 the beta distribution

collapses in a uniform distribution). The following proposition gives the mode of

the beta in the unimodal case.



Proposition 3.4. The mode of Z ∼ B(α, β) is:

m =


0, if α < 1 and β ≥ 1 or α = 1 and β > 1

1, if α = 1 and β < 1 or α > 1 and β ≤ 1

α−1
α+β−2 if α ≥ 1 and β ≥ 1

In the first two cases (the mode is on the right or the left of the distribution

support), depending on the values of α and β the density probability function can

be strictly convex (vertical asymptote at 0 or 1), strictly concave or linear. Again,

considering the interior mode case, one can define the prior from the mode and the

variance.
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