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1.- Introduction 
 
Dynamic Stochastic General Equilibrium (DSGE) models built in central Banks or in public 
institutions often contain several hundred equations. Their estimation using Bayesian methods 
is extremely expensive in CPU time. The computation of the posterior distribution mode and 
the posterior distribution using MCM algorithm generally requires at least several thousand 
evaluations of the kernel distribution. During the kernel evaluation the four following steps 
are performed:  
- Solve the deterministic steady-state. 
- Check the Blanchard and Kahn conditions. 
- Compute the rational expectation solution of the model 
- Compute the likelihood and the kernel distribution. 
Even in the simplest configuration: a rational expectation solution computed using a first 
order perturbation method and an evaluation of the likelihood using a Kalman filter, these 
steps may require several hours of computing time. 
 
This paper investigates the ways to reduce the computational time devoted to the simulation 
and the estimation of large scale DSGE models. Most of DSGE models have a block recursive 
structure. As an obvious example, AR(1) shocks can be solved independently of the 
remaining variables of the model. This recursive block structure is also met in models with 
nominal rigidities where the potential GDP is computed with the same model without nominal 
rigidities, or in multicountry models composed of a large country and of several small 
countries with no feedback effects from the small countries to the large one, or in the 
overlapping generation models without intergenerational altruism.  
 
Several papers have examined the ways to exploit this block structure in order to improve 
deterministic simulations (Gilli and Pauletto (1998), van’t Veer(2006) but few contributions 
have considered stochastic simulations or likelihood evaluation (Strid and Walentin (2009)). 
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This paper investigates the way to speed up stochastic simulation and estimation of the DSGE 
models using the block decomposition. More precisely, the gains of the block decomposition 
are considered in the four steps involved in the DSGE likelihood evaluation. 
 
The first part of the paper addresses the question of block decomposition of DSGE models. 
The block decomposition method is carefully described considering the way to reduce the 
block size. The second part examines the gains involved by the block decomposition in the 
two first steps of the likelihood evaluation. A particular attention is given to the reduction step 
during the rational expectation solution. The last part describes the first order approximation 
of the block decomposed model. The last part described the implementation of the block 
Kalman filter proposed by Strid and Walentin (2009), in order to make the most of the block 
structure. 
 
 
2.- The block decomposition 
 
We consider the following rational expectation model: 

( )1 1, , , 0t t t t tE f y y y u+ −  =   

with f a system formed of n equations, ty  the endogenous variables and tu  an iid exogenous 

shocks with ( ) 0tE u =  and ( )tV u = Ω . This formulation is rather general since models with 

more than one lag or lead, could be rewritten into the previous form adding by auxiliary 
variables and their definition equations. 
To describe the block decomposition of the model, we will consider its linearized form: 

[ ] [ ]1 1ˆ ˆ ˆ 0t t t t t tAy By CE y HE u− ++ + + =   (1) 

with ˆty  the endogenous variables expressed in deviation to their steady-state values, 
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f
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f
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 the Jacobian matrices with respect to future current and 

past endogenous variables, and with 
t

f
H

u

∂=
∂

 the Jacobian matrix with respect to exogenous 

shocks.  All the Jacobian matrices are evaluated at the deterministic steady-state. 
 
As we want to construct a recursive block structure where the variables of one block have no 
feedback effect on the variables of the previous blocks whatever the periods considered, we 
have to consider the block decomposition of the Jacobian matrix of the deterministic steady-
state model:  

*D A B C= + +   
 
The model has to be solved block by block, so each endogenous variable has to be 
unambiguously matched with an equation. This is a well-known problem of matching in a 
bipartite graph: a graph connecting two independent sets –equation and endogenous variables-. 
The augmenting path algorithm finds the maximum cardinality matching (ie the maximum 
number of equations and variables that could be matched) by starting with a first naïve 
matching and trying to improve this initial matching considering new matching based on 
unmatched vertices (equations or endogenous variables). 
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The matching process can produce a singular system, as soon as the variable jy  is matched 

with equation i and the element i,j normalized2 Jaocbian matrix ( *,
,

N
i jD ) is close to zero. To 

prevent this potential singularity, the augmenting path algorithm can be applied starting with a 
large cutoff applied to the Jaobian matrix (all the elements below the value of the cutoff are 
set to zero and the related edge in the bipartite graph are discarded) and reducing the cutoff 
until a perfect matching3 is found. 
 
Some parts of the medium/large scale models are purely recursive. The prologue is composed 
of the equations where the endogenous variable depends only on exogenous variables or on 
endogenous variables of the previous equations of the prologue. Typically, the shocks belong 
to the prologue. The prologue forms the first block of the reordered model and is low 
triangular. The epilogue contains all the endogenous variables that are pure output (the 
endogenous variables that do not appear in any equation except in the following equations of 
the epilogue). The epilogue has a low triangular shape.  
 
The remaining equations and variables could be split in several simultaneous sub blocks. For 
example, in a model with nominal rigidities, the computation of the potential GDP requires to 
add the same model without nominal rigidities. In this case the overall model could be split in 
a block recursive structure, the first block containing the model without nominal rigidities and 
the second the model with nominal rigidities. The same remark applied to a two-country 
model composed of a large and a small country, if there is no feedback effect from the small 
country to the large one: the first block contains the large country model and the second the 
small country model.  
The smallest simultaneous blocks correspond to the strong component (i.e. a sub graph where 
all the vertices could be joined from any other) of an oriented graph. This graph is a 
representation of the model structure where each vertex represents an equation. If the 
endogenous variable associated to the equation i appears in equation j an arc from vertex i to 
vertex j is added to the graph.  
Several algorithms could be used to find the strong components of the graph formed by the 
remaining equations: Tarjan algorithm or Gabow algorithm (Cormen and ali(2001)) 
Figure 1 presents the general shape of the incidence matrix4 related to the reordered D* matrix 
once the model has been block-decomposed. 
 

                                                 
2 The normalized Jacobian matrix is obtained dividing each element by the sum of the absolute value of all the 
elements of its row. 
3 A matching where all the vertices are matched. 
4 The incidence matrix is a Boolean matrix describing the model structure. If e variable j enter the equation i (or 
if row i and column j of the Jacobian matrix is non null), the element located at row i and column j of the 
incidence matrix is set to 1. 
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Figure 1: general form of the steady-state incidence matrix of the block decomposed model 
 
 

 
 
 
3.- The computation of the steady-state and Blanchard and Kahn’s conditions on a block 
decomposed model 
 
The first benefit of the block decomposition lies in the speed-up of the computation of steady-
state solution. For the following nonlinear system  

( ), , ,0 0f y y y =  

the steady-state solution can be computed using a Newton algorithm, where at each iteration 
the following linear system is solved:  

*D y b=  
Instead of solving the overall system composed of n equations which has a time complexity of 

( )3O n , with a block decomposed model, the prologue and the epilogue equations have to be 
evaluated or solved equation per equation and each simultaneous blocks have to be solved. If 
we note pn , en  and ibn  the size of the prologue, the epilogue and the b simultaneous blocks 

( 1, ,i b= … ), the time complexity order is now at most ( ) ( )3 3

1

(1) ( )
i

b
p e

b
i

n n O O n O n
=

+ + ≤∑ . 

 
In addition the size of each block could be reduced using the feedback variables. In a 
simultaneous linear system, once the feedback variables are known, the system becomes 
recursive. The remaining variables, called recursive variables, are computed recursively and 
could be considered as temporary variables. The number of variables involved in the system 
to solve reduces to the number of feedback variables. Consider the following example:  
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The graph associated to this model is: 

epilogue 

simultaneous block 2 

simultaneous block 1 

exogenous shocks AR(1) 
prologue 
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Several feedback sets could be considered: { } { } { } { } { }, , , , , , ,y r y r y rπ π . But only two 

correspond to the minimal feedback sets: { } { },y r . Hence r or y  are feedback variables. If y  

is known the system becomes recursive (π  first and then r  are simply evaluated) and the 
graph of the model has no cycle any more: 

 
To find one of the minimum feedback sets several heuristic methods are available 
(Gaurdabassi (1974) and Cheung and Kuh (1974)) and they are based on the simplification of 
model’s graph to get an acyclic graph. 
Using feedback variable, the maximum time complexity order of the linear systems to solve is  

( ) ( )( )3 3

1

(1) ( )
i

b
p e fv

b
i

n n O O n O n
=

+ + ≤∑  

with ( )i i

fv
b bn n≤  the number of feedback variables in block i. 

The Jocabian matrix of the reduced simultaneous block i expressed only with respect to 
feedback variables, is:  

*, *, , *, , *, ,

i i i i

fv fv fv fv r r fv
b b b bD D D D= +  

with *, ,

i

fv fv
bD  the ( ),

i i

fv fv
b bn n  matrix containing the derivatives of the feedback variables with 

respect to the feedback variables, *, ,

i

fv r
bD  the ( ),

i i i

fv fv
b b bn n n−  matrix containing the derivatives 

of the feedback variables with respect to the recursive variables and *, ,

i

r fv
bD  the 

( ),
i i i

fv fv
b b bn n n− triangular matrix containing the derivatives of the recursive variable with 

respect to the feedback variables computed recursively using the triangular sub-matrix. 
Figure 2 presents the general form of the incidence matrix after the determination of the 
feedback set for each simultaneous block. During the steady-state computation, these blocks 
have to be solved only for the feedback variables, the recursive variables are only a by 
product. 
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Figure 2: general form of the steady-state incidence matrix of the block decomposed model 
with feedback variables 

 
 
 
To check the Blanchard and Kahn’s conditions, the endogenous variables have to be split in 
three sets and the Jacobian matrix B of the linear approximation (1) in three components:  

( )1 1 0 1 2 0 1 2 2 2
1 1ˆ ˆ ˆ ˆ ˆ 0t t t t t tA y B B B y y y C E y− +   + + =     (2) 

with 0ˆty  the sn  purely static variables, 1ˆty  the 1n  predetermined variables (appearing in 

contemporary and lagged form) and 2ˆty  the 2n  anticipated variables (appearing in 

contemporary and leaded form) and 0B , 1B  and 2B  their respective Jacobian Matrices. 
 
The system could be reduced by eliminating the purely static variables 0ˆty .  To do it, a QR 

decomposition of the 0B matrix is performed: 
0B QR=  

with Q an orthogonal matrix and R an upper triangular matrix.  
The reduced system becomes: 

( )1 1 1 2 1 2 2 2
1 1ˆ ˆ ˆ ˆ 0t t t t tA y B B y y C E y− +   + + =   

ɶ ɶɶ ɶ  (3) 

with 1Aɶ  the 1 2n n+  last rows of the matrix 1'Q A , 1Bɶ  the 1 2n n+  last rows of the matrix 1'Q B , 
2Bɶ  the 1 2n n+  last rows of the matrix 2'Q B  and 2Cɶ  the 1 2n n+  last rows of the matrix 2'Q C . 

 
It is worth noting that a part of this reduction step could be performed using the feedback 
variables computed under the constraint that all the dynamic variables have to belong to the 
set of feedback variables5. In this case, a part of the static variables correspond to recursive 
variables and the QR decomposition has to be applied to the smaller set of the static variables 
belonging to the feedback set.  
 
Because some of dynamic variables appear both with leads and lags in the model, the 
dynamic system could be rewritten as: 

                                                 
5 This constraint prevents to increase the dynamic dimension of the system/. 
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     ⇔ =   
  

ɶ ɶɶ ɶ

 

with 1I  a selector matrix indicating the position of the mixed variables (variables appearing 
with both leads and lags in the model) in the matrix 1Bɶ  and 2I  the same selector matrix for 

2Bɶ . 
The generalized eigenvalues of this dynamic system are computed using a Schur 
decomposition of the pencil (F, G). 
 
This procedure has to be applied only for the simultaneous blocks. For the other dynamics 
blocks purely recursive, the eigenvalues are straightforward computed using the normalized 
diagonal terms of the dynamic Jacobian matrix. 

Because the order of complexity of the Schur decomposition is at least ( )3O n , the block-
decomposition of the model reduces here also the computational cost for a medium/large scale 
model.  
 
In addition, the block decomposition could also be helpful to locate the sources of instability 
since it reduces the number of variables/equations involved in the instability to those 
belonging to the block. 
 
To evaluate the gains coming from the block decomposition, we compute the steady state and 
the Blanchard and Kahn’s conditions for the three large scale models: Eagle (Gomez, 
Jacquinot and Pisani(2010)), Gimf (Kumhof and ali(2010)) and an overlapping generation 
model.  
 
Table 1: Computation time of the steady-state and the Blanchard and Kahn’s conditions with 
and without block decomposition6  

  
Without block 
decomposition 

With block 
decomposition 

Size of the biggest block7 965 560 
Blanchard and Kahn conditions (seconds) 23 7.5 

Eagle Steady state (seconds) 0.10 0.08 
Size of the biggest block 2032 903 
Blanchard and Kahn conditions (seconds) 258 45 

GIMF Steady state (seconds) 0.11 0.10 
Size of the biggest block 1086 441 
Blanchard and Kahn conditions (seconds) 91 22 

Overlapping 
generations 

model Steady state (seconds) 0.27 0.13 
 

                                                 
6 These simulations are performed on a Intel double Core T9300 with 4Go RAM using Dynare 4.2 with 
“bytecode” option in model command for the model without block decomposition and with options “block” and 
“bytecode” for the block-decomposed model. The steady-state is computed using a sparse LU decomposition 
(Dynare option solve_algo=5). 
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Table 1 reports the computational time reduction involved by the block decomposition. The 
computation time required to solve the steady-state model, is reduced at least by 10% for the 
smallest model, and by a factor 3 for the biggest one (GIMF). The CPU time cost to compute 
the Blanchard and Kahn condition, is also strongly reduced by at least a factor of 3 with Eagle 
and by a factor 5.5 with GIMF. 
 
 
4.- The first order perturbation method applied to a block-decomposed model 
 
In the traditional case the model to solve is: 

[ ]t t+1 t t-1 tE f(y , y , y , u ) = 0 

with tu  an iid exogenous shocks satisfying ( ) 0tE u =  and ( )tV u = Ω . 

We want to compute the rational expectation (RE) solution which has the following form: 

t t-1 ty  = g(y , u ) 

 
In case of a block decomposed model, we have for a block b: 

[ ]t t+1 t t-1 t t+1 t t-1E (y , y , y , u , x ,x ,x ) = 0bf                                                                (5) 

with tx  the endogenous variables from the previous blocks and ty  the endogenous variables 

of the current block.  
The RE solution of the previous blocks is supposed to be computed and for the endogenous 
variables determined in the previous and appearing in the block b:  

( )1x x ,t b t tl u−=  

We want to compute the RE solution of the current block: 

t b t-1 t t-1y  = g (y , u , x ) 

To do so, we first compute the following function, where the expected values of y  and x  are 
replaced by their RE solutions: 

( )
( ) ( )( ) ( ) ( )( ) ( )( )

1 1 1

1 1 1 1 1 1 1 1 1 1 1

y ,u ,u ,x ,x

y ,u ,x ,u , x ,u , y ,u ,x , y ,u , x , ,u , x , ,x

b t t t t t

b b b t t t t b t t b t t t t t b b t t t b t t t

F

f g g l g l l u l u

− + −

− − + − − − − − + − −=

 
Thus (5) can be rewritten as: 

( )1 -1 t 1y ,u ,u , x ,x 0t b t t t tE F − − =    

We want to linearize the model around a deterministic steady-state defined by: 

 

( )
( )
( )

b

b

y, y, y,0, x, x, x 0

x=l x,0

y=g y,0,x

bf =

 

 
The first order expansion of (5) is  



 9 

( ) ( )
( ) ( )( )

1 1 1

1 1 1 1

1

y ,u ,u ,x ,x y, y, y,0,x,x,x

ˆ ˆ ˆ                                              

ˆ ˆ                                              
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≈    

+ + + + + +
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ˆ ˆ                                              +

                                            = y, y, y,0,x,x,x
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Ag g Ag l Bg f f l l f l u

A g f l u

+

+

−

+
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( )( )
( )

1 1 1ˆ                                            

                                            = y, y, y,0,x,x,x

                                               

t t ty x x x x x x x x x x sx tA g g g l Bg f l l f l f l x

f

Ag

+ − − + + + + + +


+ ( )
( )

( ) ( )
1

1 1 1

1ˆ

                                               

                                           ˆ    

    

t t

t t t

x x u x u x u

y x x x x x x x x x sx

y y y t

y

t

u u u t

g Bg C y

Ag g Bg f uf l l f l Ag l

A g g g l Bg f f l l f l x

+

+ − −

−

+ + +

 + + + + + +

+ +

+ + + 



 



                     
The new terms implied by the block decomposition are reported in red colour in the last 
equation. 

with 
( )

1

y, y, y,0, x, x, xb

t

f
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y +

∂
=

∂
, 

( )y, y, y,0, x, x, xb
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f
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y

∂
=

∂
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1
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f
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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l x
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∂
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∂
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∂
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∂
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,0,b
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g y x
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∂
 

and sxl  a selecting matrix with a rows number equal to the number of state variables and a 

number of columns equal to the number of endogenous variable belonging to the previous 
blocks and appearing in the current block.  
 
 
The RE solution imposes the three following conditions: 

( ) ( )
( ) ( )

1 1

1

0 (6)

(7)

0 (8)

0
t t t

t t

y x x x x x x

y y y

x x x

x x u x x uy u u u

A g g g l Bg f f l l f
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Ag g Bg C

Ag l l f Agg f lg B
+ −

+

+ + + + + =

 +

+ +

+ =



+ =+ +
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As in the traditional case, yg  is recovered from the equation (6). Using a Schur 

decomposition of the pencil (F,G) and excluding the explosive trajectories we get the RE 
solution in yg  (Collard and Juillard(2001)).  

 
Knowing yg , we get xg  from equation (7) which is a Sylvester equation: 

( )1 1t t ty x x x x x x x xAg B g Ag l f f l l f
+ −

 + + = − + +      

We know that a unique solution exists for this Sylvester equation if yAg B+    and xl−  have 

no common eigenvalues. xg  is then the solution of: 

{ } ( ) ( )( )1 1

'

t t ty x x x x x x xI Ag B l A vec g vec f f l l f
+ −

⊗ + + ⊗ = − + +    

This equation could also be numerically solved using the Bartels-Stewart algorithm. 
 
Finally, knowing yg  and xg , we recover directly ug  from equation (8): 

( ) ( )1

1

t tu x x u xu x uy f l l fg A gB f lg A
+

−
 = − + + + +     

 
 
 
The RE solution of the complete model ( )1,t t tz l z u−=  is updated by stacking the new 

solution: 
1

1 1

1

( , )
z t z t

t
t t t t

x y u tt
t

l z l u
z

z l z u x
l g g uy

y

−

− −

−

+ 
   = = =     +        

 

 
For blocks containing only leads or only lags variables, the RE solution is much simpler. So 
one of the advantages of the block decomposition applied to the computation of RE solution, 
is to limit the use of generalized Schur decomposition only to the blocks containing both lead 
and lags variables. 
The gain related to the block decomposition is weaker than the complexity reduction for the 
Blanchard and Kahn conditions, because of the additional specific cost induced by the 
computation of xg  for a block decomposed model. However, the implementation of the first 

order approximation on a block decomposed model remains useful as soon as the evaluation 
of the likelihood using a Kalman filter takes advantage of this block triangular form of the RE 
solution. 
 
 
5.- Block Kalman filter 
 
The general idea of Block Kalman Filter (Strid and Walentin 2009) is to take advantage of the 
block structure of the model to reduce the number of operations involved in the likelihood 
evaluation with a Kalman filter. 
  
Consider the state-space representation of a DSGE: 

 
( )

( ) ( )
t

1

Y                 measurement equation

    state equation

t t

t t t

d ZX v

X c T X R

θ
θ θ ε−

= + +

= + +
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with  tY   the measurement vector (Nx1), tX  the state vector (mx1), tε  the innovation vector 

(gx1) ( ( )~ 0,t N Qε ) , tv  the measurement error (Nx1) ( ( )~ 0,tv N H ) and θ  the structural 

parameters of the model.  
In our case  ( ) y xT g lθ = =  has a block triangular form and ( ) uR gθ = . 

  
The traditional Kalman Filter (without block decomposition) is composed of the following 
two steps: 

- The updating equations: 

( )1
1 1 1

1 '
1

, ,t t t t tt t t t t t

t t tt t t t

X E X Y Y X K F Y ZX d

P P K F K

−
− −

−
−

=   = + − − 

= −

…

 

with 1 't t tK P Z−=  and 1 1, ,t t t tF V Y Y Y ZK H−=   = + …  

- The prediction equations 

1

1 ' '

t t t t

t t t t

X TX c

P TP T RQR

+

+

= +

= +
 

 

The likelihood is simply: ( ) ( ) ( ) ' 1

1 1

1 1
ˆ ˆlog log 2 log

2 2 2

T T

t t t t
t t

NT
L F v F vθ π −

= =
= − − −∑ ∑  with 

1t̂ t t tv Y ZX −= − . 

 
The most time consuming step of the Kalman filter lies in the computation of the conditional 
variance of the prediction error 1t tP+ . The structure of the transition matrix, which depends on 

the block structure of the model, could be used to reduce the computational burden.  
 
Instead of splitting by blocks all the equations of the Kalman filter as in Strid and Walentin 
(2009), we focus on the most time consuming step: the computation of the conditional 
variance of the prediction error 1t tP+ . The last term 'RQR  is time-invariant and is computed 

once for all at the beginning of the filter. Most of the effort is devoted on the first term: 't tTP T . 

This product has two features: 
- The transition matrix has a block recursive form as described in figure 1. Only the non-zero 
terms of the matrix T (the lower block triangular terms) have to be considered in the product. 
It should be noted that this approach differs from that in which a sparse representation of T is 
considered. Since the block triangular form is constant throughout the estimation process, the 
block structure could be hard coded in the matrix multiplication. This feature is exploited in 
both product ( t tTmp TP=  and . 'tmp T ) 

- The overall product produces a symmetric matrix. This feature is taken into account in the 
second product . 'tmp T . 
 
Those two features are incorporated in a mex-file where matrix product is implemented as 
described in figure 3: 
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Figure 3: computation of 't tTP T  (first_nz and last_nz are index vectors indicating for 

each row of the transition matrix respectively the first and the last nonzero element) 
do i=1 to n; 
  do j=1 to n; 
     do k=first_nz[i] to last_nz[i] 
          tmp[i , j] = tmp[i , j] + T[i , k] * Ptt[k , j]; 
     endo k; 
   endo j; 
endo i; 
do i=1 to n; 
  do j=i to n; 
     do k=first_nz[j] to last_nz[j] 
          P[i , j] = P[i , j] + tmp[i , k] * T[j , k]; 
     endo k; 
     P[j , i] = P[i , j]; 
   endo j; 
endo i; 
 
For the AR(1) shocks located in the first part of the prologue, the index vectors are such that 
first_nz[i] = last_nz = i. In this case, the element i,j of the conditional variance of 
the prediction error  become simply: , ,1 , , i i j jt t t ti j i j

P P T T+ =       . 

The reduction of the computing burden when using block Kalman filter comes in this case 
from the diagonal transition matrix in the prologue part of the state-space representation and 
from the symmetry of the covariance matrix. Strid and Walentin have evaluated the 
computational time reduction using a block Kalman filter. They show that with large scale 
models, the CPU time decreases with the number of blocks considered and the computational 
time is reduced by a factor of 1.5 for a four block Kalman Filter.  
 
To evaluate the CPU time reduction involved by the computation of the RE solution of the 
block decomposed model and the use of a block Kalman filter, the complete likelihood of the 
Smets and Wouters (2007) medium scale model has been evaluated one thousand times. 
 
Table 2: one thousand evaluations likelihood of the Smets and Wouters(2007) model 
 Without block 

decomposition 
With block 

decomposition 
and kalman filter 

With block 
decomposition 

and block-kalman 
filter 

Size of the biggest 
block 

58 26 26 

Number of blocks 1 12 12 
CPU-time 
(seconds) 

27 25 20 

 
With a medium scale model, the overall CPU time gain induced by the block decomposition 
is at most 25%. The two last columns of table 2 indicate that most of the CPU-time reduction 
is related to the block-Kalman filter (the CPU time is reduced by 20%). This result is in line 
with Strid and Walentin (2009) with an algorithm gain of 50% for a large scale model. 
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6-. Conclusion 
 
This paper investigates the reduction of computational time induced by the block 
decomposition in all the steps of the stochastic simulation and the estimation of the DSGE 
models. For large scale models, the block decomposition can strongly reduce the time 
required to compute the steady-state and the Blanchard and Kahn’s conditions. The reduction 
of the computational time seems to be modest when we consider the RE solution and the 
evaluation of the likelihood using a block-Kalman Filter. However, the gains using block 
decomposition seem to be much more promising when global methods are used to compute 
the RE solution. The block decomposition could be view as one solution to curse of 
dimension problem faced with global method on medium/large scale model. 
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